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Abstract 

An entirely novel synthesis combines the applied cognitive psychology of a task 

analytic approach with a neural cell assembly perspective that models both brain and 

mind function during task performance; similar cell assemblies could be 

implemented as an artificially intelligent neural network.  A simplified cell assembly 

model is introduced and this leads to several new representational formats that, in 

combination, are demonstrated as suitable for analysing tasks.  The advantages of 

using neural models are exposed and compared with previous research that has used 

symbolic artificial intelligence production systems, which make no attempt to model 

neurophysiology.  For cognitive scientists, the approach provides an easy and 

practical introduction to thinking about brains, minds and artificial intelligence in 

terms of cell assemblies.  In the future, subsequent developments have the potential 

to lead to a new, general theory of psychology and neurophysiology, supported by 

cell assembly based artificial intelligences. 

Keywords: Ergonomics, Cognitive Psychology, Artificial Intelligence, Neuroscience, Task 

Analysis, Artificial Neural Networks, Cell Assemblies. 

 

.1 Introduction 

There already exists a strong relationship between a cognitive ergonomics Task Analysis (TA) 

method and Artificial Intelligence (AI) of the symbolic sort.  These are, respectively, Goals, 

Operations, Methods and Selection rules (GOMS, e.g. Card, Moran and Newell, 1983;  Kieras, 

2004) and production systems such as ACT-R (e.g. Anderson and Lebiere, 1998, Anderson 

2007) and EPIC (Meyer and Kieras, 1997).  Anderson and Lebiere claim that such systems 

“are the only modelling formalism capable of spanning a broad range of tasks, dealing with 

complex cognition …” (p3), and in their enthusiasm go so far as to claim for ATC-R “a 

profound sense of psychological reality” (p13); Anderson (2007) sees EPIC as a precursor to 

ACT-R 6.0, contributing “Perceptual-Motor” modules.  EPIC’s developers are rather more 

cautious in their claims (e.g. Kieras and Meyer, 1994; Meyer and Kieras, 1997).   

A fundamental problem with these production system symbolic AI approaches involves 

“cognitive architecture” which Anderson (2007, p7) defines as “a specification of the structure 

of the brain at a level of abstraction that explains how it achieves the function of the mind.”  

There is a problem concerning his “level of abstraction” notion.  At the level of program code, 

these symbolic AI systems make no attempt to mimic the human brain, other than as functional, 

i.e. psychological, modules, although Anderson (2007) attempts, post hoc, to relate some of 

these to brain areas.  The theoretical issue concerns simulation fidelity, here how well one 
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thing, a symbolic AI, can mimic another, the brain, when at the level of operation they are 

completely different types of thing.  This paper proposes a solution by using a different sort of 

AI, one which does attempt simulation of how both the brain and the mind operates and which 

uses a single, common modelling representation for both. 

There are hundreds of different TA methods and virtually all of them have a cognitive, 

psychological component, although the psychology generally is not that good.  As Kieras 

(2004) rightly notes, “a task analysis for system design must be rather more informal and 

primarily heuristic in flavour compared to scientific research.”  Based on the cognitive 

psychology of Card, Moran and Newell (1980), GOMS is one of the more psychologically 

sophisticated of TA methods yet is easy to criticise as scientifically inadequate.  For example, 

when a task performer needs to access Long Term Memory (LTM), a GOMS analysis can 

identify this but is pretty well independent of alternative theories of human LTM architectures 

and processes, i.e. a GOMS analysis would hardly change whether one modelled human LTM 

like computer backing store, or as memory traces with different strengths, or as multiple traces. 

The basic theoretical argument in GOMS, and generally in TA, is that some cognitive 

representations and processes similar to those identified during an analysis must occur.  For 

example, at some point in a task it might be necessary to store information temporarily, which 

the TA might call using Short Term Memory (STM), but whether this is the STM of Miller 

(1956) is moot, never mind the Baddeley and Hitch (1974, Baddeley, 1976) alternative 

architecture of their Working Memory, which has been considerably developed subsequently, 

e.g. Oberauer et al. (2018), and there are a number of other temporary and buffer like stores 

that are hypothesised to be common in all human minds, although the precise theoretical 

specification of these remain controversial, e.g. Morey, et al. (2018).  Similarly, most TAs will 

identify when decisions are made in tasks, but the cognitive decision making mechanisms are 

left unspecified. 

Given the difficulty of predicting human performance, e.g. for its traditional application of 

training design, GOMS is really very good, although Kieras (2004, Kieras and Butler, 2014) 

are carefully cautious about this, and there are exceptions (e.g. Jorritsma et al., 2015).  While 

no one has ever successfully developed a general task taxonomy, i.e. a specification of sub-

tasks or other task components that, together, could be used to specify any task performed by 

people (e.g. Balbo et al., 2004), GOMS does produce a modular, reusable output that resembles 

program pseudo-code.  Indeed, it is a short, obvious step to implement such generic GOMS 

modules as software tool support to facilitate predicting task performance and, on such coat-

tails, to implement the GOMS model as a symbolic AI.  Given the tight binding between GOMS 

and systems like ACT-R and EPIC, it is unsurprising that they share similar theoretical 

limitations.   

This paper’s proposal involves a modern take (Huyck & Passmore, 2013) on Hebbian Cell 

Assemblies (CAs).  Hebb’s (1949) theory is that concepts are represented in the brain by a 

collection of neurons firing, e.g. there is not a Grandmother Cell that represents one of one’s 

grandmothers, but rather there is a Grandmother CA, a collection of neurons that can fire 

persistently, with or without external stimulus from the environment.  Though Hebb’s 1949 

work predates work on cognitive architecture (Newell, 1990), Hebb’s cognitive architecture is 

elegant and straightforward: each mental representation of a concept is represented in the brain 

as a unique CA., i.e. this is the identity thesis of Smart (2007 for a summary) and of his 
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colleague Ullin (1956); also of the similar, independent work of Feigl (1958) who says of 

mental events, that they “are identical with certain (presumably configurational) aspects of the 

neural processes”.  

CAs are normally implemented as a simplified model of neurons to mimic how the human 

brain might operate.  The main proposal in this paper is that it is possible to model the 

behavioural and cognitive psychology of task performance using a putative CA based brain 

model and, in theory, the same model could be implemented as a CA based AI.  One problem 

for GOMS and ACT-R that a CA approach automatically deals with are memory representation 

issues; Hebb’s theory is one of LTM, i.e. CAs represent the conceptual contents of LTM.  

Attractive if not completely compelling evidence for the CA approach is that like nearly all 

Artificial Neural Networks (ANNs), CA based ones are self-organising, i.e. they can learn.  

This is the Achilles’ Heel of nearly all symbolic AIs, they need human programmers first.  

Thus, if a GOMS model changes then its symbolic AI equivalent would have to be 

reprogrammed.  Anderson (2007) discusses learning in some detail (e.g. Chapter 5), but it is 

hardly surprising that ACT-R can model human learning since, at least in theory, following a 

TA is should be able to model any task performed by people, including ones involving learning.  

There is, however, a critical difference between being able to model human learning and the 

basic, inherent, inevitable and unstoppable learning that is fundamental to ANNs, including 

CA-based ones. 

The ‘Cell Assembly roBots’ (CABots) demonstrate in a virtual environment the learning of 

both aspects of the environment and new objects within it, and it has a problem solving 

capability, all without the intervention of human programmers (Huyck & Mitchell, 2018).  

While ACT-R, and other cognitive architectures like Soar (Laird et al., 1987) can learn, these 

typically work by parameter setting or generating new rules using old rules.  They are not 

capable of, for instance, symbol grounding (Harnad, 1990).  CAs provide an ability, for 

instance, to ground symbols, suggested as early as Hebb (1949). 

There is considerable evidence, summarised by (Huyck & Passmore, 2013) that much of the 

human brain does use a CA architecture. The Strong CA Hypothesis, that all brain function is 

by CAs, is almost certainly untrue, although specialised brain areas may develop during 

neonatal tuning from a general CA architecture, e.g. Blakemore and Cooper (1970); and that 

cortical plasticity allows some recovery of function after localised brain insult, also might be 

plausibly explained by general purpose CAs becoming tuned in adulthood.  The Weak CA 

Hypothesis, that the brain’s default architecture is CA based, remains plausible.  

On a more cautious note, much of our current understanding of CAs comes from work on 

ANNs.   There is a serious issue of the biological plausibility of such ANNs.  For example, 

while it is now possible to simulate a billion neurons in real time in a system (Furber, et al., 

2013), these artificial neurons are really represented as a rather simple algebraic equation and, 

as such, are an extremely simplified model of the brain’s physiology.  While, for example, 

Huyck’s Fatiguing Leaky Integrate and Fire (FLIF) neurons (Huyck and Parvizi, 2012) are a 

better simulation of brain neurons than early ANNs, e.g. perceptrons (Rumelhard and 

McClelland, 1986), or, earlier, compartmental models (Hodkin and Huxley, 1952), they fail to 

model fundamental neural physiological properties such as spike trains.  Even FLIF neurons 

fail to model basic physiology such as different neurotransmitters, other temporal neuron 

properties, and much else.  
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An absolutely crucial, and it seems sometimes overlooked, property of even quite simple CAs 

is that Byrne & Huyck (2010) have proved that they can be Turing machines, i.e. that, given 

enough neurons, they can compute the result of any legal mathematical or logical expression.  

The critical consequence of this is that anything that can be written using traditional 

programming approaches, including symbolic AI code, can be done using simulated neuron 

based CAs.  At the moment, run-time efficiency remains a major problem, but it is believable 

that performance will continue to improve in the relatively short term future.  On the other 

hand, Huyck’s CABot already runs in real time on a PC. 

Hebb’s original theory has been considerably developed, particularly in recent years.  A simple 

but critical improvement is that Hebb’s concepts have been extended to most mental content 

and, indeed, to representing processes.  On the latter, CAs naturally represent processes as CAs 

change over time, e.g. a grandmother CA is updated during a visit to her, and this is akin to a 

run time process description of computer program code (Osterweil, 1987; Diaper and Kadoda, 

1999).  CAs can also represent processes by providing structure to CAs pre-ignition, for 

example, for doing mental arithmetic, Natural Language (NL) parsing, and for other sorts of 

common problem solving and planning. 

As concepts, Hebb’s CAs can fire persistently over time and this remains a fundamental 

property of newer CA models, although, more accurately, they have the capability of 

persistence because in some tasks this may not be required, e.g. in a self-terminating, visual, 

serial search task the target CA would not persist for long if the target is the first item, but may 

have to persist for minutes in other circumstances.  Critically for the brain, CAs can  be ignited 

for longer than it takes a neuron to fatigue.  Therefore, for CA persistence on the order of 

several seconds and above, there must be a pool of non-firing neurons that can be swapped in 

to replace fatiguing neurons so as to maintain an ignited CA (see PotN, section 2).  

Furthermore, with very long term CA persistence a member neuron might fire, fatigue, recover 

and then re-fire.  Indeed, it is essential that the particular neurons that are firing in an ignited 

CA change over time so that the CA can perform processes, for example, doing a calculation 

(Tetzlaff et al., 2015).  Even when a CA functions as an LTM item, this will change over 

ignitions, even when general learning is slight (see the QPID model below).   

The brain has around 1011 neurons (Smith, 2010) and the size range of ignited CAs has been 

suggested as 103 to 107 neurons  (Huyck and Passmore, 2013), although the upper estimates 

probably refer to “super-CAs composed of many sub-CAs”.  Even with all these brain neurons, 

most neurons will, at different times, have membership of different CAs, although CA type 

may be restricted, e.g. a neuron in the visual cortex might always be involved with visual 

processing, but be in millions of different CAs during its existence.  

In the absence of alternative theories and appropriate physiological evidence, a simple model 

is that CAs can exist in four states: Quiescent, Priming, Ignited, and Decaying.  For simplicity, 

it is assumed that all four states are physiologically similar, i.e. that the Q, P and D states are 

but weaker versions of a CA in the I-state, with fewer neurons but these may still be shared, at 

different times, across numerous CAs.  Functionally, however, the four states may differ 

significantly: Q-state CAs are structured for permanent storage.  The role of CAs in their P-

state is to prepare a CA for ignition and support processes such as attentional mechanisms 

involving competition between CAs.  The reality in brains in undoubtedly very complicated 

and a P-state CA probably has a very different structure at the start of priming to just before 
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ignition as it evolves into a form ready for ignition; it is also possible that CAs may exist in the 

P-state without on some occasions ever igniting.  The D-state is involved with preparing a CA 

for its LTM storage and may be equally as complex in its structures and functions.  The 

physiology and functionality of these transition states is not so much under researched as 

virtually unresearched. 

In a typical QPID cycle the new Q-state is not quite the same as its precursor.  When the 

notionally same CA is ignited on different occasions, not only will these differ as to the set of 

neurons involved in each ignition, but the CA itself will not be quite the same.  Thus, the 

functional definition of a CA must be at a sufficiently high level of description that such 

differences usually can be ignored.  From Scott-Phillips et al. (2011) in the context of their 

distinction between proximate and ultimate explanations in evolutionary theory, it may be that 

functional and physical descriptions are of different types: the physical, brain TACAP models 

being proximate and addressing “How?” questions and the mental, functional ones may be 

ultimate models and addressing a highly specialised epistemological type of “Why?” questions.   

Some concept of levels of description, of detail, is common in many areas of human endeavour.  

The super- and sub-CA proposal and the QPID model fits neatly with the extensive use of the 

levels concept in TA, and with this paper’s CA based approach.  Emphasising that a TA model 

is an analysts’ model and different from that of task participants and other involved parties, 

e.g. managers, (Diaper, 2004 and ibid.), one difficult “judgement call” (Kieras, 2004) is the 

level at which a particular TA is pitched.  Most TA methods involve some form of task 

decomposition into subtasks, and sub-subtasks, down to the level analysts select (N.B. different 

levels may be chosen for different parts of the same task).  Many methods do simply decompose 

tasks, but not all.  For example, the old but still popular Hierarchical Task Analysis (HTA) 

method (Annett and Duncan, 1967; Annett, 2004) decomposes task goals rather than recorded 

task components.  As such, HTA is an analysis technique that can be used after task data is 

collected and represented.  

This last point about HTA is crucial to this paper, which similarly only discusses an analysis 

technique and not a full TA method.  Traditionally, a TA method early on will involve multiple 

information sources and data collection techniques; observation of performance, interviews 

and questionnaires are common, but many other data sources and techniques have been used 

over the decades.  In nearly all TA methods, whatever data is collected, it is combined to 

produce some sort of Activity List (AL), otherwise known as a ‘task protocol’ (N.B. this is 

different from a ‘task transcript’).   

While varying greatly in style, generally an AL is a prose description of how a task is performed 

and the strong recommendation of Diaper (1989a, 2004, and ibid.) is that an AL should consist 

of a list of short sentences that each describe a task step, at the level chosen, and each line 

should identify a main agent and the action(s) performed towards one or more things (agents 

or objects), perhaps using other things (tools).  It is some such AL representation that HTA and 

this paper’s work uses as input to their analysis techniques.  One word of caution, however, 

data collected with one TA method in mind may not be suitable if other analysis techniques are 

then used; missing data being the most obvious problem, but there are more subtle ones. 

This paper is not proposing yet another TA method or, even, analysis technique, at least, not at 

the moment.  This is one of the reasons why “Perspective” appears in its title.  A perspective 

is “a point of view” and in the scheme of things as used here, is a very general theoretical 
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formulation, perhaps a high level framework.  Within a Popperian (e.g. Popper, 1979) scientific 

epistemology, the claim is that only well specified hypotheses can be experimentally tested and 

that disproof of one does not necessarily disprove the more general framework from which that 

false hypothesis was derived; metaphorically, pruning twigs from a knowledge tree may not 

damage its main branches.   

Perspective, as used in this paper, is a “General Theory of Psychology” (section 5.3.3), perhaps 

akin to cognitive psychology’s one that has the axiom, “The mind is an information processing 

device.”  The claim is that all psychological phenomena can be described and, ultimately, 

explained within the perspective defined by its primary axioms (Diaper and Stanton, 2004).  

As an extension, the CA equivalent would be something like, “The mind and brain are 

information processing devices that both use common, although differently described, cell 

assemblies.” 

Cognitive psychology’s axiom is implementation independent, i.e. it has no constraints on how 

the brain works, its architecture, processes and so forth, because it is only concerned with 

mental models, of information processing.  In contrast, the CA perspective provides for a firm 

cognitive architecture that relates and explains concomitant brain and cognitive function.  This 

and similar issues are more properly and completely covered in the Discussion (section 5.2). 

The version of TACAP that is used in this paper is described in section 2.  There remains, 

however, one further major issue concerning the “Perspective” in the TACAP title. 

TACAP, as used in this paper, deliberately exploits the limitations of TA to provide a 

demonstration of what may be possible and an example of potential utility.  The emphasis is 

that it is only a demonstration and this leads to what at first might seem an odd claim: we do 

not care if everything in the demonstration is wrong. 

It is very likely that none of the brain CAs identified in this paper will ever be found to exist, 

but using the TA defence (see above), something similar must occur, and it remains possible 

that in a training programme based on a TACAP approach, some CAs from the TA will cause 

similar CAs in trainees.  Similarly, the mental, functional TA descriptions provided may also 

all be wrong, but this may also be a matter of poor TA, which is not at all a concern in a 

demonstration.  As for AI, the proposals concerning similarities with brains cannot be worse 

than that for the GOMS to ACT-R/EPIC relationship, howsoever the CAs proposed are wrong 

in detail, since the symbolic systems have no claim to any hardware realism.  What is provided 

in this paper is a demonstration of the potential of a CA based perspective within the practical, 

engineering limitations of TA.   

Before returning to the topics introduced above in the Discussion section (section 5), the 

TACAP version developed (section 2) and its application and the results (sections 3 plus 

Appendix I, and 4, respectively) are reported.  

 

.2 The Task Analysis Cell Assembly Model 

An advantage of this first demonstration using TA and the CA notion is that it can exploit TA’s 

heuristic approach (see Kieras, 2004, quoted above) and, as argued immediately above, as 

applied psychology the description of task performance needs only to be plausible. 
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The following subsections outline the models and representations finally used.  In their 

development a considerable variety of things were tried and rejected, sometimes simply 

because they were just too awkward to use.  Leaving such to historians of science, this paper 

tends to concentrate on what was found successful and relatively easy to use.  One of the biggest 

determinates of the development programme was consistency.  Most TAs are performed 

iteratively and our development work was an extreme example as we would not only return to 

initially analysed task steps and re-analyse them, but sometimes we would even change the 

graphics and notational style to what was found later to be a better approach.  Indeed, 

particularly during the early analysis stages, decisions were made about the nature of the CAs 

and their relationships that quite fundamentally changed the earlier analyses, which had to be 

redone, some of them several times. 

 

.2.1 The Simplified Cell Assembly Model (SCAM) 

The standard, simple graphical representation of a CA plots number of neurons firing against 

time (Kaplan et al., 1991, Huyck and Passmore, 2013).  Unsurprisingly, this graph resembles 

that of an individual neuron’s firing and, indeed, most negative feedback systems.   

The lifecycle of a simple CA is: (a) there is a background level of neuron firing (quite a lot in 

the brain, but it is not organised, section 4.2.3); (b) a CA starts to develop, usually due to 

“priming” from already ignited CAs, and the number of neurons firing in the CA starts to 

increase, probably in an exponential manner (N.B. competition between a number of alternative 

CAs at this stage may be a critical part of autonomous cognitive decision making and 

attentional mechanisms); (c) sufficient neurons fire such that the CA’s “threshold” is reached; 

(d) at which point a large number of neurons rapidly join the CA which then “ignites”; (e) as 

with most negative feedback systems, there is an overshoot as firing neuron CA membership 

climbs to its ignition state; (f) after the overshoot the function stabilises at a level which may 

be several times higher than threshold; (g) the CA then persists and there is a slow decay in the 

number of neurons firing to support the ignited CA, due to neuron fatigue, if nothing else; (h) 

at some point the CA will extinguish, either because there are insufficient neurons firing to 

maintain ignition, or because the CA becomes inhibited by the firing of other CAs; (i) the CA’s 

neuron activity drops below threshold and the CA decays, although what it decays to may 

depend on the type and context of a CA, i.e. it may decay to background levels, or have a 

refractory period like neurons and be harder to re-ignite, or it may remain above background 

so that it is primed for re-ignition (sections 4.2.3 and 5.3.1). 

Many CAs will be more complicated than this simple model, particularly ones that persist for 

long periods, minutes if not hours, as fatigued neurons are replaced.  All sorts of things might 

change during a CAs persistence phase (g) due to CA competition, cooperation and, even, 

combination or division.  Thus, this part of the model might present a saw tooth profile rather 

than a relatively smooth decline in the number of neurons firing in an ignited CA; for example, 

see Appendix I: CA 06 MSHWA – Motor Stride to Hot Water Area. 

The Simplified Cell Assembly Model (SCAM) is shown in Figure 1 and each CA is represented 

as a single dimension array consisting of a unique identifier (ID) and eight parameters, four 

relating to number of neurons and four to elapsed time.  We have not modelled the overshoot 

(f) because we have no idea as to its function, if it has one.  Also, because so little is known or 
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even theorised about background levels, priming and decay, this part of the SCAM is simplified 

to two parameters (P50% and D50%).   

 

Figure 1 The SCAM diagram.  The four lower parameters are measures of time and the four 

floating ones are measures of neuron numbers. 

 

The four SCAM parameters associated with number of neurons are: 

PotN – the potential number of neurons that could have membership of the CA; 

Thresh – the threshold at which there are sufficient neurons firing to cause CA ignition; 

IgMax – the maximum number of neurons that fire at CA ignition; 

IgFat – the number of firing neurons after neuron fatigue at the end of CA ignition, i.e. 

at CA extinction. 

N.B. In some cases IgFat may equal Thresh, in which case the CA will then decay, but in other 

cases the CA may be supressed so that at CA extinction IgFat > Thresh, as shown in the SCAM 

diagram. 

The four SCAM parameters associated with time are: 

P50% - the time at which a CA is primed to 50% of the neurons firing that are required 

to reach its ignition threshold; 

IgTIg – an ignited CA’s time of ignition; 

IgTEx – an ignited CA’s time of extinction;  

D50%  – the  time at which a CA decays to 50% of the neurons that were firing at CA 

extinction (IgFat). 
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Even within the limited demonstration analysis, across CAs there is a considerable range of 

shapes to the SCAM diagrams and each of the eight parameters have some variation.  This is 

desirable and if it were not so then a parameter could be treated as a constant. 

For each CA identified, values for each parameter have to be estimated and while this is 

relatively straightforward from observational data for the four time parameters, those 

associated with the number of neurons may be wild guestimates.  Far too little is known about 

brain CAs and the guestimates may be in error by an order of magnitude or two.  On the other 

hand, generally the expectation is that errors will be consistent, so subsequent corrections based 

on new research might fix such errors by multiplying by a simple equation, or even just a 

constant.  Explanations for choosing parameters for individual CAs are included in the main 

analysis (Appendix I). 

While a crucial analysis component, with practice the SCAM diagrams became quite easy to 

visualise and their main representation during analysis was in the SCAM table. 

 

.2.2 The SCAM Table 

Each identified CA is represented as a line in the SCAM table using the CA’s unique identifier 

and the eight SCAM parameters.  Table 1 shows the first few lines of  the main analysis. 

No. ID PotN Thresh IgMax IgFat P50% IgTI

g 

IgTEx D50% ID Acronym 

01 CKEC 10 2 7 6 -1.0 0.0 0.4 0.5 COG Kitchen Entrance Check  

02 VKEG 20 10 15 14 -0.8 0.1 0.3 0.4 VIS Kitchen Entrance General 

03 CMC 5 1 2 1.5 -1.0 0.4 2.5 4.0 COG Make Coffee 

Table 1  Example lines from the main analysis’ SCAM table (Table 2). 

While perhaps not ergonomically optimised, once one can visualise SCAM diagrams then the 

SCAM table becomes one of  the three critical analysis tools. For example, the task timeline as 

represented by the ignition and extinction of each CA (IgTIg and IgTEx, respectively) can be 

seen by simply running down the table’s two columns for these parameters.   

The SCAM table had many uses during analysis and was crucial for iteration during analysis 

and for maintaining consistency and for error checking.  Such roles are particularly important 

because of the complexity of another main analysis representation, the Cell Assembly 

Architecture Relationship (CAAR) diagram. 

 

.2.3 The Cell Assembly Architecture Relationship (CAAR) Diagram 

The tidiness of the CAAR diagram shown in the results of the main analysis (Figure 9) belies 

its origins, which were pages of handwritten scrappy notes and diagrams.  The basic procedure 

was to identify the next potential, small set of CAs that together would represent a cognitive 

task step.  The possible inputs would have been identified during analysis of CAs earlier in the 

task and then the relationship between the CAs being analysed would be worked out; finally, 

the possible outputs would be identified. 

In the CAAR diagram each CA identified is represented by a box and the relationships between 

CAs, i.e. how one CA ignites, maintains or supresses another, and what information is passed 



10 
 

between CAs during their ignition, are represented by arrows.  CA priming and decay also need 

to be considered. 

The CAAR diagram has elapsed task time, approximately within graphical constraints, 

increasing vertically downward.  Horizontally, CAs are arranged by type, from left to right: 

Perceptual; Cognitive; and Motor.  The perceptual CAs are further subdivided as being Visual, 

Touch and Kinaesthetic ones   These CA types always represent the first character of each CA’s 

ID, i.e. V/T/K, C, or M. 

Figure 2 shows a generic CAAR diagram.  It is the template for the pattern that was the most 

commonly found in the main analysis (section 4.3).   

 

 

Figure 2 Generic CAAR Diagram. 

 

In its present form the CAAR diagram shows only a limited amount of the information that it 

could contain.  Iteration between CAs, e.g. where each of a pair is helping to maintain the other, 

is a critical property that is shown in neither diagrammatic or tabular representation; in the 

rough, hand drawn diagrams multiple arrow heads were used to show such iteration.  Further 

possible refinements are left to the Discussion (section 5.3.1), although the reason why the 

CAAR acronym includes “Architecture” is that it is all the considered but currently 

unrepresented aspects of each CA, and how it relates to others that is architectural and 

potentially puts it beyond just a set of 1960s cognitive psychology style boxes and arrows.  

Description and explanation of many of these factors is included in the text associated with 

each CA in the full main analysis (Appendix I).  Further description of the TACAP analysis 

techniques’ method is in section 3.2. 

 

.3 The ‘First Steps to Making Coffee’ Example  

It all started as a very quick investigation after the inspiration to join the TA and CA concepts.  

After a few days it became clear that the whole TACAP analysis enterprise would require 

considerable, long term, effort.  There were weeks of trial and error as everything from the 

basic concepts, the notations, and the graphics had to be worked out.  For example, at least half 

a dozen diagram styles were tried before developing the SCAM diagrams used in this paper; 

there were similar graphical problems with the CAAR diagram; and the SCAM table had to be 

reformatted a number of times as the eight SCAM parameters were themselves developed.  In 
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the end, just nine seconds of expert task behaviour was analysed, and it takes over sixty CAs 

to do so. 

 

.3.1 Task Selection and Data Collection Method 

We appreciate the view of those who think that never again should there be a TA paper that 

uses the making_a_hot_beverage example.  In our defence, the CA perspective is novel, so, on 

practical grounds, it is reasonable to choose an extremely familiar task, indeed, probably the 

one most commonly chosen to introduce students to TA.  Furthermore, the demonstration 

analysis, in time, is rather short, so there is not much coffee making to worry the cognoscenti. 

Data was collected using a repeated trials, self-observation, post sub-task recording, heuristic 

approach, i.e. the first author, who is a TA expert (hence “heuristic”), watched himself, many 

times (more than thirty) doing the first part of his making coffee routine and then making 

written notes after each trial.  During some of the trials timing data (to the nearest 0.1 seconds) 

was recorded at two points during the task using a small mobile phone’s digital stopwatch held 

in the left hand (section 4.1).  The initial observations took place over several days and 

additional trials were done over the following month during the first stages of the main analysis. 

Against any objections to this heuristic method, there are a number of advantages for what, we 

keep stressing, is only a demonstration of a possible analysis technique and not a new TA 

method.  First, the task is a very highly practiced one, with a history of over 20 years in the 

current house and unchanged after about half a dozen years since the kitchen was remodelled. 

Second, its nigh invariant repeatability allowed access to renewed observations when they were 

needed, and they were.  For example, the subject was unaware and failed to initially record 

what happened to the left hand while the kettle, grasped in the right, was moved to the sink for 

filling.  Third, the subject was already expert at such self-observation because, using his TA 

expertise, he continuously works at prosaic task optimisation, ideally with an end result that he 

can continue to think of other things while performing the common and mundane.  Thus, the 

data collection approach adopted provided high quality data, indeed, much higher quality than 

from most TAs that involve analysts recording the performance of other people. 

As a further defence, the subject-analyst discovered new details of how he performed the task 

of which he was previously unaware, for example, the pattern of steps taken outside and across 

the kitchen (section 3.3.2), as well as the example of the empty left hand’s actions mentioned 

above.  At the least, this demonstrates that a TA was done and that the demonstration is not 

based merely on a desktop, thought-experiment exercise. 

The three other residents in the house were also observed doing the same kettle filling task (see 

Appendix I: CA 06 MSHWA – Motor Stride to Hot Water Area) which, at least, demonstrated 

that a more traditional TA with subject and analyst separate was feasible. 

 

.3.2 Analysis Method 

The AL resulting from the data collected was very simple and along the lines: enter kitchen; 

go to hot drinks preparation area; grip kettle in right hand; move kettle over sink; remove kettle 

lid with left hand; invert kettle to empty it; replace lid with left hand; move kettle under water 
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spout; fill kettle.  As soon as the analysis started, each such AL line was rapidly elaborated, 

often supported by further task observations, and soon the ordered list of identified CAs 

effectively became the AL used for further analysis.   

At this early stage of research it is not feasible to provide a detailed method for the TACAP 

analysis technique, and it is undesirable to do so.  Method specification in TA is extremely 

difficult, to the extent that Diaper (2001) suggests that it is necessary to develop analyst support 

software to support method specification.  While such tools’ superficial, primary function is to 

make analysis easier and less error prone, to teach and guide a neophyte analyst requires 

supporting software to have an explicit and detailed model of the method.  The discipline 

required of programming means ready identification of missing and, much more frequently, 

underspecified parts of a method, which expert analysts bridge using their craft skills, often 

without being aware they are doing so.  Indeed, HTA is often described as a “methodology” 

and its massive under-specification is seen as an advantage, for the experts who have served 

their apprenticeship.   

Once the TACAP analysis technique settled down during the latter two thirds of the analysis, 

it was all done online, indeed, as if there was software tool support and with the analyst having 

the role for the desirable but missing program code.  Of course there was a lot of printing for 

off-line checking and editing, but during analysis the only paper was a couple of very scrappy 

sheets with a hand drawn version of the CAAR diagram, and a lot of annotations, crossings 

out, etc.  On-screen, centred was the main analysis document (Word); to the left was the SCAM 

table (Word) and to the right the CAAR diagram (PowerPoint).  The acronym glossary 

(Appendix II) was also always available.  Usually, a small set of CAs would be analysed as a 

group, the most common pattern being that shown in Figure 2 (Section 2.3).   

The first step was to create an entry for each CA in the main document and to copy and paste 

(to minimise typographic errors) the ID and spelled out acronym into the glossary, and the ID 

into the SCAM table.  As an example of cognitive architecture, the default is that at least one, 

already analysed, input will go to the new cognitive CA.  There may be more than one known, 

analysed input, and during analysis, occasionally, there is a floating output, where an earlier 

CA must have this, but the analyst was not sure of its still unanalysed destination CA.  Note, it 

is only a default, but with the advantage that exceptions, and there are some, are bought to the 

analyst’s attention for especial consideration.  It is an example of architecture in that other 

defaults could have been chosen, for example, making perceptual CAs the default and have 

some sort of Perception – Cognition – Motor cycle or left–then–right scan, i.e. P_C_M_P_C… 

or P_C_M_C_P_C…, respectively.  The TACAP default model is more of a tree with C usually 

mediating between P and M, i.e. C_P_C_P… & C_M_C_M… .  There are positive and 

negative arguments for any of these architectures, but they are all only defaults and the analysis 

allows alternatives, for example when perceptual and motor systems become tightly bound in 

some expert behaviours (section 4.3). 

Once the new CA set’s inputs have been cut and pasted to the tabular entries in the main 

document, then each CA is described as text (Appendix I) and the relationships between the 

CAs are added during writing the text, i.e. when a CA has an output to another member in the 

set being analysed, then the output is copy and pasted as input to the appropriate CA.  This is 

just the sort of thing an analyst’s support tool would do automatically.  Also, while writing the 

text, the SCAM table is gradually filled in.  In most cases the values assigned to entries in the 
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SCAM table are explained in the Appendix I text, while attempting to avoid too much 

repetition.  The order in which data was entered to the SCAM table was driven by the linear 

sequencing of the natural language text.  After the first few CAs were analysed the SCAM 

diagrams were not drawn simply because the analyst could visualise them from the SCAM 

table and each diagram took quite some time to produce, which would have interfered with the 

main analysis processes; a trivial software tool is needed to draw the SCAM diagrams 

automatically from the table. 

At the end of a CA’s writing process, the outputs to yet unanalysed CAs will be entered.  This 

text will be what is copy and pasted when it is the turn of these CAs to be analysed.  This led 

to inserting some new IDs in the SCAM table ahead of their analysis. 

A further feature of the Input/Output tabular specifications in the main analysis (Appendix I) 

is their punctuation.  No punctuation between lines means that the two inputs or outputs occur 

in parallel and increasing punctuation strength, i.e. comma, and though rarely used in the main 

analysis (Appendix I), semicolon and colon, show increasing separation in time; a full stop 

indicates the termination of one input or output before the start of another, although both are 

within the main analysis’ description of a particular CA.  Checking the punctuation at the end 

of analysing a set of CAs was an important part of the error checking routines. 

Unlike the SCAM diagrams, it was found important to regularly update the CAAR diagram 

during analysis.  This was no simple transposition from its very rough paper representation to 

its accurate computer version.  The CAAR diagram is a triumph of graphic design in that it 

shows over sixty CAs and their relationships in way that can be printed on a single sheet of A4 

paper, without sacrificing readability.  Many designs were tried and some of the earliest would 

have needed a dozen or so pages rather than just one.  Furthermore, because it was prepared in 

PowerPoint, the analyst’s default graphical editor for decades, it is actually quite easy to 

animate the diagram (Appendix III).  This is returned to in the Discussion (sections 5.1 and 

5.3.1). 

On the other hand, using PowerPoint was a bit of a pig, even for a real expert, as the small scale 

pushed PowerPoint’s resolution when drawing the arrows.  It was essential to keep the CAAR 

diagram up to date, no matter that it was time consuming to do.  When there was iteration in 

the analysis, returning and modifying CAs already analysed, then the CAAR diagram, the 

SCAM table and the main text’s tabular specifications were always changed together.  Usually, 

changing one analysed CA resulted in changing other ones as well. 

The method adopted was designed to minimise error and facilitate error checking, e.g.  every 

output must have its input, in the architecture, to another CA, which shows one of the chosen 

simplifications, not modelling the internal processes of a CA (section 2.1).  It is necessary to 

check that every CA is correctly represented in each of the four main representations: the main 

analysis document, the CAAR diagram, the SCAM table and the SCAM diagrams.  Especial 

care needs taking where previously analysed CAs have been changed by dividing or combining 

them as this will likely to have changed their IDs, which is the key identifier in all the main 

representations.  The acronym glossary (Appendix II) was only updated occasionally once the 

analyst had learned his own acronymic CA IDs, and he used them all the time when reasoning 

about relationships between CAs. 
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.3.3 Analysis Introduction 

Subsections 3.3.1 and 3.3.2 are intended to provide an introduction to the task and a flavour of 

the style used in the full main analysis in Appendix I.  Subsection 3.3.3 contains a strong 

recommendation to readers that, before they read the results in section 4, that they familiarise 

themselves with some of main analysis in Appendix I and with the main representations used. 

 

.3.3.1 The Coffee Making Decision 

Prior to the start of the analysis in the kitchen, the subject has made the decision to make a 

small mug of coffee. This decision could be based on many things, from habit or time since 

last coffee, or thirst or other dehydration indicators, or just the need for a break, and so forth.  

Numerous CAs will have been involved in making this decision, but a critical issue is what one 

or more cognitive CAs are primed or already ignited at the kitchen’s entrance.  There may be 

intervening activities so that the time from making the decision to arriving at the kitchen 

entrance might be five or more minutes. 

One possible model would involve the decision making CAs igniting a coffee making one that 

would persist until task completion.  One could even suggest that this CA would contain a plan 

of what is involved in making a small mug of coffee.  There is some evidence that this model 

is not that plausible.  First, with intervening tasks then such a CA would have to persist, ignited, 

while many other CAs are deployed.  Furthermore, the make coffee CA might just be part of a 

list of tasks to complete and such a dynamic task list CA would have complex behaviours as 

tasks are completed and, sometimes, the list order might be shuffled, some tasks deleted or 

postponed, and so forth.  Note, arguments involving consciousness are weak to irrelevant, e.g. 

that people do not perform loads of intervening tasks while thinking “must make a coffee, must 

make a coffee, must …”. 

At a minimum, when the coffee making decision is made then a ‘Make Coffee’ CA must be 

ignited as a record of the decision.  This CA can be of modest size as the decision record and, 

if one chooses, one could call it a “goal”.  There is evidence that this CA does not remain 

ignited in the widely reported phenomenon of one going to a room and then realising one cannot 

remember why one went there, i.e. the CA fails to reignite in its now appropriate context. 

In the analysis that follows, the assumption is that the CA ‘Make Coffee’ has been previously 

ignited and remains sufficiently primed that it will reignite with suitable environmental input, 

e.g. from vision.  The analysis starts at the kitchen entrance and the evidence suggests that the 

host of go-to-the-kitchen CAs that brought the subject to this spot all close down.  This is 

suggested by the final kitchen entrance approach behaviour described in the next subsection. 

 

.3.3.2 Before the Kitchen’s Entrance 

Before the kitchen entrance there is a shuffle zone.  The following observations are a direct 

consequence of the research reported in this paper.  The kitchen entrance has no door and there 

are four routes to arrive at the entrance, from North West to South East withershins 

respectively: corridor, stairs, lean-to, and lounge (Figure 3).  Whichever route the subject takes 

to the kitchen entrance, he always arrives with his right foot planted in the centre of the kitchen 
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entrance, that foot may be over the entrance’s low, wooden floor bar, or the whole foot, up to 

a couple of centimetres clear, in front of or behind the bar (Figure 4B), but the right foot is 

always aligned at a right angle to the entrance’s bar and at the centre of the entrance.  Indeed, 

experiments requiring the left foot to be the kitchen entering step result in noticeably clumsy 

initial steps within the kitchen and the body, moving at a reasonable domestic speed, is 

unbalanced (e.g. balancing arm movements, hip and upper body twists and similar ergonomic 

inefficiencies).  The right foot entrance is achieved by a shuffle in the area outside the kitchen, 

particularly easy to observe as, when necessary, a half step will be taken when coming down 

the corridor, and also, after descending the stairs, where although either foot may have started 

at the top, steps are adjusted in the shuffle zone.  The shuffle zone is less clear from the lean-

to because usually its door is closed before taking steps towards the kitchen entrance, but 

rationally a shuffle must exist because the right foot is inevitably correctly placed, as it is from 

the lounge, which requires a complex, short curved route of about 130 degrees so shuffling is 

again less easily observed. 

 

Figure 3– The “Shuffle Zone” outside the kitchen entrance. 

 

3.3.3  Further Context 

Rarely is “a picture worth a thousand words”, which is, say, well into three typed sheets of A4.  

To cater for a divers readership, however, what is  offered a quick, photographic story, 

hopefully, to help both task visualisation and comprehension.  Just a bit from the first few 

seconds … 

 



16 
 

 

Figure 4 (A) The kitchen entrance; (B) The “strides” across the kitchen: right foot in 

green; left in red. 

 

These photographs were taken opportunistically and the kitchen is “as found”, without any 

prior preparation, or any tidying.  Figure 4A shows the kitchen’s ground geography, for 

illustration, but note the top of the photograph and the important context and focus of visual 

attention, already getting ready for kettle identification. 

Figure 4B shows the “invariant” strides from the entrance to the hot water preparation area 

(Appendix I, CA 04 CAHWA to CA 06 MSHWA).  The left foot, in red, takes the first and 

third strides and on the photograph the precision of foot placement is roughly represented by 

the shading.  The right foot (shown in green) launches the strides and, from the shuffle zone 

(section 3.3.2), the foot may be before or over the bar on the entrance’s floor.  The next right 

foot stride is fairly precisely placed but with the left foot very accurately and correctly located, 

the right foot then makes a forward and then curving motion to locate the feet closely adjacent 

and, concomitantly, the whole body, well balanced in a tight corner space, where it is expertly 

placed.  The visual and cognitive systems, however, are primarily concerned with the hot drinks 

preparation area, and how to pick up the kettle. 
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Figure 5 General view of the kitchen.   Figure 6 View of the hot water preparation area. 

Figure 5 shows the general view of the kitchen, say about midstride on the right foot (see 

above).  The target is the kettle, but there are potential obstacles to its left and right.  The coffee 

filter cone to the left is where it usually is, but the draining board to the right often presents 

novel problems when not empty. 

Figure 6 shows the view once at the hot water preparation area.  Binocular vision is an asset 

here, for detecting that the steel sieve handle to the right of the kettle is in front of it; and there 

is a lot of leftward lean on the translucent plate. 

 

 

Figure 7  The views from the hands’ locations approaching the hot water 

preparation area: (A) right hand; (B) left hand.  

 

Fifty centimetres or so below the eyes, the view from the hands is rather different, and Figure 

7 presents the start of the “flight path” views: 7A shows about where the right hand starts its 

final approach to the kettle and what it has to navigate (obviously some climb is essential); 7B 
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shows the left hand’s “view” and its target will later be somewhere around the black tile, 

catching up with the top of the kettle after it has been lifted (Appendix I: CA 33 MLHTKL). 

 

 

Figure 8  View of the target kettle in the hot water preparation area.  

 

Moving the right hand to the, exactly identified, kettle handle without error, i.e. with no contact 

with any other objects, and, also, smoothly, curvaceously, etcetera, is a behavioural triumph.  

At this range the angle between the point of view in Figure 8 and the right hand’s flight path 

(Figure 7A) is, in computational terms, impressive, massive, etc.  On the other hand, it is just 

what CAs are so neat at describing, explaining and, even, is expected of them because they are 

flexible and capable, by themselves, of learning.  The right hand is under visual negative 

feedback control, but it is typical of expert performance that only little control compensation 

is required from the planned motor output (N.B. this “planned” output in CA terms is just the 

initially ignited CA that, while ignited, evolves with sensory feedback, and other relevant 

inputs, and, perhaps its own temporal structure, i.e. as a process – see Introduction). 

 

3.3.4  The Main Analysis 

It is only for reasons of space that the main analysis is Appendix I and none of it is here in the 

main body of the paper.  Section 4’s “Results” are a high level description of the analysis, but 

in one sense the real results reported in the paper is the main analysis itself.   

A completely new analysis technique has been developed and to understand the paper it is 

necessary for readers to have some understanding of the technique in application and the issues 

that were considered when assigning parameters to the SCAM table and relationships in the 

CAAR diagram.  The issues considered include various psychological aspects and some basic 
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neuroscience because the SCAM table, and the whole analysis, like other TAs, is performer 

centred and so the estimates of CA properties, size and so forth, relate to the human brain and 

not to possible ANN CA implementations (section 5.3.2).  Although, as stated in the 

Introduction, if the estimates are in error by even a couple of orders of magnitude, then at this 

stage we are not at all concerned; it could be easily corrected by further research. 

The main results in Appendix I contains graphical, tabular and textual descriptions of over sixty 

CAs.  First time readers are strongly recommended to examine the first few CA descriptions 

(the fourth ‘Cognitive Approach Hot Water Area (CAHWA)’, is where the analysis starts to 

settle down after the first few analysed task steps).  The initial descriptions tend to be longer 

and more descriptive and later ones rather briefer; and somethings are not repeatedly 

mentioned. 

It is essential to consider the main analysis in Appendix I in conjunction with the SCAM table 

and the CAAR diagram, which are produced below in Table 2 and Figure 9.   

 

No. ID PotN Thresh IgMax IgFat P50% IgTIg IgTEx D50% ID Acronym 
01 CKEC 10 2 7 6 -1.0 0.0 0.4 0.5 COG Kitchen Entrance Check  
02 VKEG 20 10 15 14 -0.8 0.1 0.3 0.4 VIS Kitchen Entrance General 
03 CMC 5 1 2 1.5 -1.0 0.4 2.5 4.0 COG Make Coffee 
04 CAHWA 10 2 5 3 0.5 0.6 3.1 3.2 COG Approaching Hot Water Area 
05 VAHWA 20 2 10 6 0.6 0.7 2.5 2.6 VIS Approaching Hot Water Area 
06 MSHWA 10 2 7 6 0.6 0.7 3.0 3.1 MOT Stride to Hot Water Area 
07 CKHWA 10 3 7 6 0.8 1.0 2.1 2.2 COG Kettle Hot Water Area 
08 VKHWA 20 5 10 9 1.2 1.3 2.0 2.1 VIS Kettle Hot Water Area 
09 CKH 5 1 3 2 1.5 1.6 3.5 3.6 COG Kettle Handle 
10 VKH 10 3 7 6 1.6 1.8 3.3 3.4 VIS Kettle Handle 
11 MRAB 5 1 2 2 1.9 2.0 2.1 2.2 MOT Right Arm Ballistic 
12 VRH 15 2 5 4 2.0 2.1 3.2 3.3 VIS Right hand 
13 CRH 12 3 7 6 2.1 2.2 3.4 3.5 COG Right hand 
14 CHWA 15 5 10 8 2.2 2.4 3.5 3.7 COG Hot water Area 
15 CRHA 25 5 15 12 2.3 2.5 3.6 3.7 COG Right Hand Approach 
16 VRHA 25 10 15 14 2.3 2.6 3.3 3.4 VIS Right Hand Approach 
17 MRHA 10 2 7 6 2.4 2.7 3.7 3.8 MOT Right Hand Approach 
18 TRHKH 5 2 3 2 3.0 3.5 3.8 3.9 TOU Right Hand to Kettle Handle 
19 CRHG 5 2 3 2 3.2 3.7 3.8 4.2 COG Right Hand Grip 
20 MRHG 5 1 3 2 3.7 3.8 3.9 4.0 MOT Right Hand Grip 
21 TRHG 5 1 3 2 3.7 3.8 3.9 4.3 TOU Right Hand Grip 
22 CRHH 10 2 5 5 3.8 4.0 - - COG Right Hand Hold 
23 MRHH 10 2 3 3 3.9 4.1 - - MOT Right Hand Hold 
24 CLK 10 3 6 5 4.0 4.2 4.7 4.8 COG Lift Kettle 
25 MLK 5 1 3 2 4.1 4.3 4.4 4.5 MOT Lift Kettle 
26 KKW 5 1 3 3 4.2 4.4 4.5 4.6 KIN Kettle Weight 
27 VLK 10 3 6 5 4.3 4.5 4.6 4.7 VIS Lift Kettle 
28 CD 15 5 8 6 4.5 4.6 6.0 6.1 COG Drainer 
29 VD 25 8 15 13 4.6 4.7 5.5 5.8 VIS Drainer 
30 CMKS 25 5 15 12 4.7 4.8 6.6 6.7 COG Move Kettle Sink 
31 VMKS 15 5 10 9 4.8 4.9 6.5 6.6 VIS Move Kettle Sink 
32 MMKS 20 5 10 9 4.9 5.0 6.5 6.6 MOT Move Kettle Sink 
33 MLHTKL 15 3 9 6 5.0 5.1 7.0 7.0 MOT Left Hand Track Kettle Lid 
34 KLHTKL 10 2 6 5 5.1 5.2 7.8 7.8 KIN Left Hand Track Kettle Lid 
35 MSBS 10 5 7 6 5.1 5.3 6.9 7.0 MOT Shuffle Body Sink 
36 CS 5 2 4 3 6.5 6.7 - - COG Sink 
37 VS 10 5 7 6 6.6 6.8 - - VIS Sink 
38 CLHRKL 5 1 4 3 6.8 6.9 7.2 7.3 COG Left Hand Remove Kettle Lid 
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39 VKL 10 5 7 6 6.9 7.0 7.1 7.2 VIS Kettle Lid 
40 VLH 10 5 7 6 6.9 7.0 7.1 7.2 VIS Left Hand 
41 MLHRKL 7 2 6 5 7.0 7.1 7.7 7.7 MOT Left Hand Remove Kettle Lid 
42 VKWL 10 5 7 6 7.1 7.2 7.3 7.4 VIS Kettle Without Lid 
43 CEK 5 1 4 3 7.1 7.2 7.4 7.5 COG Empty Kettle 
44 MRHIK 3 1 2 2 7.2 7.3 7.4 7.4 MOT Right Hand Invert Kettle 
45 VKE 10 3 5 5 7.3 7.4 7.5 7.6 VIS Kettle Empty 
46 CKE 3 1 2 2 7.4 7.5 7.6 7.6 COG Kettle Empty 
47 CRHOK 5 1 4 3 7.5 7.6 7.8 7.9 COG Right Hand Orientate Kettle 
48 VRHOK 10 5 7 6 7.5 7.6 7.9 8.0 VIS Right Hand Orientate Kettle 
49 MRHOK 3 1 2 2 7.6 7.7 7.8 7.9 MOT Right Hand Orientate Kettle 
50 CRKLLH 8 3 6 5 7.8 7.9 8.2 8.3 COG Replace Kettle Lid Left Hand 
51 VRKLLH 10 5 7 6 7.8 7.9 8.2 8.3 VIS Replace Kettle Lid Left Hand 
52 MRKLLH 10 3 7 6 7.9 8.0 8.1 8.2 MOT Remove Kettle Lid Left Hand 
53 CMKT 15 5 10 9 8.1 8.2 - - COG Move Kettle Tap 
54 VT 10 3 5 5 8.2 8.3 8.6 8.7 VIS Tap 
55 VK 15 5 8 7 8.2 8.3 - - VIS Kettle 
56 MMKT 15 5 10 8 8.3 8.4 8.6 8.6 MOT Move Kettle Tap 
57 MHKT 6 1 3 3 8.4 8.5 - - MOT Hold Kettle Tap 
58 CMLHTS 15 7 10 8 8.3 8.5 8.9 9.0 COG Move Left Hand Tap Switch 
59 VLHTS 20 5 10 7 8.5 8.6 - - VIS Left Hand to Tap Switch 
60 VTS 10 5 7 6 8.6 8.7 - - VIS Tap Switch 
61 MMLHTS 15 5 8 7 8.7 8.7 8.9 9.0 MOT Move Left Hand Tap Switch 
62 TLHTS 8 2 6 5 8.7 8.8 - - TOU Left Hand Tap Switch 
63 CFK  10 3 7 6 8.8 8.9 - - COG Fill Kettle 
64 MPTSU 5 1 3 3 8.9 9.0 - - MOT Pull Tap Switch Up 
65 CMC …         COG Make Coffee 

 

Table 2 – The SCAM table. 
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Figure 9– The CAAR Diagram. 
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.4 Results 

Everything in this results section is potentially nothing more than analyst artefacts.  What these 

results present are the consequences of the decisions made by the analyst at a lower level of 

analysis, i.e. these results are the collective description of applying the TACAP analysis 

technique.  Furthermore, and particularly because the analysis was iterative and decision 

consistency was a primary concern, then patterns in the data presented here have sometimes 

been deliberately imposed during analysis.  For example, thresholds will tend to be larger with 

the larger CAs (PotN) so any correlation between the two is deliberate and therefore rather 

uninteresting.  

On the other hand, at the very least these results demonstrate that the analysis has been applied 

in a tidy and consistent manner.  They also give an insight into the detail and complexity of 

analysing at the low levels chosen, and hint at what more complete and relevant task examples 

would require. 

 

.4.1 Time Results 

Timing data to the nearest 0.1 seconds was collected over several days using the stopwatch 

function on a mobile ‘phone.  From the kitchen entrance, data was collected from two easily 

identified steps in the task: (i) when the kettle handle is gripped and ready for the kettle’s lift 

from its base (CA 23 –  MRHH); and (ii) at the end of the analysed task portion when the kettle 

starts to fill (CA 64 – MPTSU). According to the main analysis, these times were 4.1 seconds 

and 9 seconds, respectively. 

Time data is nearly always a problem in TAs, as it was in this study.  As illustration of TAs 

typical problems with time data, the first measure at MRHH had a recorded range of 3.3 – 4.2 

seconds.  The first problem is that a first opportunity sample would tend to be around 4 seconds 

but if repeated half a dozen times then the times would decrease to around the 3.5 second mark, 

i.e. even highly practiced performance improves with several goes at the same task.  Secondly, 

if only first times are considered then there is still half a second of variability, much of which 

depends on the state of the drainer and the concomitant complexity of the right hand’s flight 

path to the kettle handle (section 3.3.3). 

Generally, time data is far less important than sequence data in most TAs and it is one more 

craft skill of analysts to give a single time estimate to each task step.  The estimates in the main 

analysis are, in this tradition, mostly interpolated, approximately correct and on the higher side 

of the range of times recorded. 

 

.4.2 SCAM Results 

There were 64 CAs identified in the main analysis: 34.4% (22/64) were cognitive; 39.1% 

(25/64) were perceptual; and 26.6% (17/64) motor. Of the perceptual CAs, 31.3% (20/64) were 

visual and there were 5 other perceptual CAs: 4.7% (3/64) touch and 3.1% (2/64) kinaesthetic. 
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The general, as an average (arithmetic mean), CA from the main analysis can be drawn, as can 

the SCAM models for the three main types of CA: cognitive, visual and motor.  To do so, the 

five non-visual sensory CAs (3 x touch, 2 x kinaesthetic) and those CAs that are still ignited at 

the end of the analysis, were removed from the data, leaving 48 CAs on which the following 

analysis is based.  Table 3 gives such average data. 

 

CA Type PotN Thresh IgMax IgFat P50% IgTIg  IgTEx  D50%   

All 11.1 3.3 6.8 5.7 4.5 4.7 5.4 5.5 

Cognitive 10.4 2.8 6.6 5.2 3.8 4.1 5.0 5.2 

Visual 14.4 5.0 8.6 7.5 4.5 4.7 5.3 5.4 

Motor 9.5 2.6 5.9 4.9 5.3 5.4 6.1 6.2 

Table 3  Average data for the 8 SCAM parameters. 

 

The four time metrics (in italics in Table 3) require a little manipulation before they can be 

used to draw versions of the SCAM diagrams.  The details of this are included below because 

they provide an example of suboptimal analysis technique design, which is addressed in the 

Discussion (section 5.3.1). 

The time parameters (t0 – t3) in Table 4 are calculated to correspond to the start of a CA, i.e. 

t0 = 0.0 seconds, and the priming time to ignition (t1), the duration of the ignition until 

extinction (t2), and the decay to zero (t3).   

Since P50% is the time at which there is 50% of the neurons firing to reach threshold, then, for 

graphical purposes, the simplified linear priming in the SCAM requires P50% to be doubled 

for the average time to ignition, after subtracting from the data’s time of ignition (IgTIg), i.e. 

t1 = (IgTIg – P50%) x 2 

The time a CA is ignited (t2) is simply the difference between its extinction minus its ignition 

time, with the elapsed priming time added for graphical purposes, i.e. 

 t2 = (IgTEx – IgTIg) + t1  

As with t1, the full elapsed decay time requires D50% to be doubled, after subtraction from the 

extinction time (IgTEx), and then the elapsed time to extinction (t2) needs adding, i.e.  

 t3 = ((D50% –  IgTEx) x 2) + t2 

Table 4 shows the data as used to represent the average SCAM diagrams. 

 

CA Type PotN Thresh IgMax IgFat t0 t1 t2 t3 

All 11.1 3.3 6.8 5.7 0.0 0.4 1.1 1.3 

Cognitive 10.4 2.8 6.6 5.2 0.0 0.6 1.5 1.9 

Visual 14.4 5.0 8.6 7.5 0.0 0.4 1.0 1.2 

Motor 9.5 2.6 5.9 4.9 0.0 0.2 0.9 1.1 
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Table 4  Average data for the 8 SCAM parameters as used to draw the average SCAM diagrams 

in Figure 10. 

 

From Table 4 are derived the following four SCAM diagrams in Figure 10. 

 

 

Figure 10 Average SCAM diagrams: (A) all; (B) cognitive; (C) visual; and (D) motor. 

 

For the task analysed, Figure 10A shows the shape of the general CA, but this may involve 

inappropriate averaging whereas the differences between the three classes of CAs (B, C, and 

D) is of interest because, at the very least, the results show that the analyst’s theoretical model 

has been successfully applied.  This is a post hoc result in that it was possible that after the 

analysis the SCAM diagrams would not be as anticipated; the results, however, are as expected. 

The number of neurons potentially in a CA (PotN) is highest for the visual CAs, and as can be 

seen in Table 5a, they are nearly 30% higher than the overall mean and nearly 40% higher than 

the cognitive CAs’ mean and 50% higher than the motor CAs’ mean.   

 /All /Cognitive /Motor 

Visual/ 29.7% 38.5% 51.6% 

Cognitive/ -6.4% - 9.5% 

Motor/ -14.4% - - 
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Table 5a  Difference in means for PotN. The backslash represents how parameters are 

divided, i.e. vertical parameter divided by horizontal one. 

The results in Table 5a reflects the theoretical assumptions that the visual cortex is large and 

visual processes complicated, so visual CAs will be concomitantly large, particularly when 

compared to those of the motor cortex and, although a great deal of the human cortex appears 

unspecialised, it has a great deal to do at any moment, i.e. there will be many cognitive CAs 

ignited in parallel and not just those identified in a specific analysis. 

The same pattern of results can be seen for differences in the means for both estimates of 

Threshold and IgMax, as can be seen in Tables 5b and 5c, respectively. 

 

 /All /Cognitive /Motor 

Visual/ 51.6% 78.6% 92.3% 

Cognitive/ -15.1% - 7.7% 

Motor/ -21.2% - - 

Table 5b Difference in means for Threshold. The backslash represents how parameters 

are divided, i.e. vertical parameter divided by horizontal one. 

 

 /All /Cognitive /Motor 

Visual/ 26.5% 30.3% 45.8% 

Cognitive/ -2.9% - 1.1% 

Motor/ -13.2% - - 

Table 5c Difference in means for IgMax. The backslash represents how parameters are 

divided, i.e. vertical parameter divided by horizontal one. 

Again, these results confirm that the theories have been successfully applied, in this case, that 

CAs, which may involve many neurons, i.e. a large PotN, will also tend to be large (IgMax) 

and with a relatively high Threshold to match. 

The raw data summarised in Tables 5a-c could be subjected to statistical analysis, but it is not 

done so in this paper because: (a) most differences would not be significant, given the sample 

sizes and even using non-parametric tests; (b) such analyses would be post hoc and therefore 

statistically weak; and (c) we would be guilty of data hunting and significance chasing.  On the 

other hand, clearly the potential is there for later, better planned research, to use decent 

analytical statistics. 

 

.4.2.1 Fatigue Results 

CAs are not simple negative feedback circuits in that the model of brain CA ignition is that 

they will fatigue, even with recruiting additional neurons from their potential pool (PotN), 

unless post ignition activity from other CAs adds to a CA’s activity.  N.B. the possibilities are 

for: (a) functionally just replacement neurons to maintain the current CA; or (b) similar, 

functionally related neurons, which might, for example, be involved in learning, even just up-

dating one of one’s Grandmother CAs when one visits her (see Introduction).  Otherwise, a CA 
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will fatigue and extinguish, “naturally”, i.e. they have a “life-expectancy”, without CA external 

neural support. 

Fatigue, in terms of the number of K neurons, is simply: IgMax – IgFat.  To compensate for 

different numbers of CAs in the three types analysed (N = All 48; Cognitive 18; Visual 16; 

Motor 14) Fatigue% is Fatigue divided by the size of the CA at ignition, i.e. ((IgMax – IgFat) 

/ IgMax) x 100.   

The fatigue data has been analysed in some detail.  The overall view is given in Table 6. 

 

 Fatigue IgMax Fatigue% 

All 1.1 6.8 16.2% 

Cognitive 1.4 6.6 21.2% 

Visual 1.1 8.6 12.8% 

Motor 1.0 5.9 17.0% 

Table 6  Fatigue and percentage Fatigue, i.e. the latter corrected for differing 

numbers of CA types. 

Stressing that there can be no hope of statistically significant results, it was hypothesised that 

the 8.4% difference in Fatigue% between cognitive and visual CAs could be interpreted as: (a) 

a difference between types of CA; or (b) due to time, that cognitive CAs last longer (Figure 

10).  Data for the duration of ignition (IgTEx – IgTIg) and Fatigue (IgMax – IgFat) were 

examined in detail but all attempts at even the most speculative hypothesis testing was thwarted 

by Fatigue’s range (0-3 K neurons for Cognitive and Motor CAs and 0-4 for Visual ones) and 

that the large majority of CAs had a Fatigue value of one. 

 

.4.2.2 Ignition Duration Results 

Following the above, failed, analysis, the CA ignition duration data (IgTEx – IgTIg) was 

examined further  The investigation was driven by a desire to understand the distribution of 

data that underlies, and thus causes, the arithmetical average values used in the SCAM 

diagrams (Figure 10).  The duration of a CA is one of its two primary features, and it can be 

argued its most important, not merely theoretically, but, critically, ignition duration is a 

measure in time (seconds), and time is linear.  The estimates of the size of CAs may be wildly 

incorrect (Introduction), but whatever the caveats about timing tasks expressed in section 4.1, 

one can have more confidence about sequence; the time estimates in the analysis can only be 

in error by a couple of tenths of a second, because the times must fit the sequence.  Furthermore, 

and consequentially, examination of the ignition duration data is less open to analyst bias, and 

thus of great potential value. 

Using bins of half a second, Figure 11 summarises the ignition duration of the types of CA. 

This figure represents the same data in two ways, as a histogram and a line graph. 
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Figure 11 Ignition durations of CA types presented as both line graphs and histograms. 

 

One would need a lot more data, but there is a hint that these CA ignition duration results are 

bi-modal, i.e. half the CAs last for less than half a second and most of the remainder last for 

over a second, with a few lasting over two seconds.  It would not be implausible that, in  the 

task, that there are two types of CA: short lasting ones and persisting ones. 

 

.4.2.3 Priming and Decay Results 

There is background activity in brains caused by neurons firing that appears random (section 

2.1).  The amount of such background activity may vary.  For example, in the visual system 

there is, overall, more activity in the optic nerve in darkness than under normal viewing 

conditions, because retinal processes use lateral inhibition, but this background lacks the highly 

organised transmission of spike trains down the optic nerve bundles that signal retinal receptive 

field stimulation of varying spatial frequencies, and their location.  What happens when 

disorganised activity reaches the visual cortex?  The various forms of pattern recognition CAs 

are not ignited, although people do report fleeting and vague visual experiences in darkness 

(phosphines).  We hypothesise that in such circumstances the overall background activity in 

the visual cortex may be quite high, but insufficient to ignite any of the vast number of potential 

visual CAs.   

Little is really known about the relationship between background neural activity and potential 

CA ignition and the same is so for both priming and decay: see the QPID model (Introduction).  

For example, with higher levels of background activity, would a CA need more, the same, or 

less priming to reach ignition?  Theoretically all are possible.  Similarly, are CA thresholds 

changed by an elevated background?   
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When a CA extinguishes, the evidence is that there is an initial rapid decay of member neurons, 

but what is less clear is whether the later stages of decay return to whatever is the background 

level, or remain above this level for an appreciable time, or suffer a refractory period where the 

CA is harder to re-ignite.  Furthermore, different CAs, and in different circumstances, may 

behave differently. 

Perhaps the most unsatisfactory aspect of the SCAM used concerns priming and decay.  Just 

looking at the SCAM diagrams (Figure 10), the priming and decay functions look exaggerated.  

This is undoubtedly caused by the single linear parameter used for each (P50% and D50%).  

Figure 12 shows a redrawn general SCAM diagram with more plausible priming and decay 

functions.  These issues are returned to in the Discussion (section 5.3.1). 

 

Figure12  Redrawn general SCAM diagram with original Figure 1 shown with dotted 

lines where these two figures differ. 

 

.4.3 CAAR Results 

In the SCAM, which does not model internal CA processes, for every output from a CA there 

is its equivalent input to another CA or to a motor output that goes outside the system studied.  

Therefore, one can either model CAAR inputs or outputs as the results of one simply mirroring 

the other.  The following analysis models outputs from CAs.  Due to lack of data, the following 

results are ignored: (a) the five non-visual perceptual CAs (touch and kinaesthetic); (b) the 

seven inhibitory relationships (all between cognitive and motor CAs); and (c) system external 

motor outputs. 

There were 89 relationships identified from the main analysis’ CAAR diagram (Figure 9) and 

their outputs, and to where these outputs go, is summarised in Table 7. 
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Table 7  Input-Output numbers between CAs of different types from the CAAR Diagram 

(Figure 9); horizontal output to vertical input. 

The same results can be represented graphically (Figure 13), where it is easier to see the 

cognitive architecture that was used during the main analysis (Appendix I). 

 

Figure 13  Graphical representation of Table 7’s Input-Output numbers between CAs 

of different types from the CAAR Diagram (Figure 9); main relationships in bold. 

 

Figure 13 confirms that in the vast majority of cases the Generic CAAR model (see section 2.3 

and its Figure 2) was adhered to successfully during analysis.  The centre portion of Figure 13 

represents the basic chain of cognitive CAs, although noting that while there were 18 cognitive 

CAs, there were 26 outputs from one cognitive CA to another because some cognitive CAs 

may output to more than one CA of this type, i.e. the “basic chain” does have some branches 

or overtakes. 

The intended, tight binding between cognitive CAs and visual ones (N=16) is well illustrated 

in Figure 13.  That the outputs between cognitive and visual CAs is not equal (20 versus 21 

relationships) is caused mostly by the occasional tight binding of motor and visual CAs.  For 

example, the ballistic movement of the right arm (CA 11 MRAB) directly primes the visual 

system to expect the appearance of the right hand (CA 12 VRH) without going through an 

intermediate cognitive CA.  Less than 5% (4/89) of the relationships analysed show such direct 

binding of motor and visual processes. 

 Visual → Cognitive → Motor → 

→ Visual 0 20 3 

→ Cognitive 21 26 1 

→ Motor 1 17 0 
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With one exception, inputs to the 14 motor CAs are from cognitive ones (N=17).  There are 

only four outputs from the motor CAs as most of their outputs will be to the mid or hind brain 

and body movement systems.  Many of these system external motor outputs will have inputs 

back into the system via sensory inputs.  For example, when a hand is under negative feedback 

control then there is a cycle of: motor CA output → motor behaviour → optical input → visual 

CAs → cognitive CAs → motor CAs → motor CA output … . 

 

.5 Discussion 

The authors consider the research reported to be fantastically successful, for a first 

demonstration!  This section therefore starts with the positives, first at the level of TA (5.1), 

and then at a more rarefied, philosophical level concerning the integration in a single model of 

both brain and mental function (5.2).  The final sub-section (5.3) suggests possible future 

developments of the work, including: development of a CA based TA technique; AI 

implementation of CAs; more general theoretical considerations; and some practical near term 

potential developments by the authors, and, they hope, others. 

 

.5.1 Task Analysis with a Cell Assembly Perspective 

That it is possible to carry out a TA using a CA perspective is itself a success.  The authors 

have worked for some years, together and independently, developing CA-based models and by 

exploiting TA’s applied psychological approach, it is perhaps not surprising that they could 

identify putative CAs to associate with the task analysed.  In terms of difficulty this is perhaps 

akin to attempting a tabula rasa GOMS analysis where every module decomposed must be 

invented from scratch, i.e. without reference to any previous GOMS analyses.   

A more impressive success is the development of the first TACAP technique.  The authors 

claim that their main analysis in Appendix I is their main result and the technique’s success 

can be judged by the difference between the first third of the analysis, when they were in an 

iterative development mode, and the latter two thirds, which went quite smoothly and, relative 

to other TA approaches, quite quickly.  While they are very cautious with the results (section 

4), these generally indicate that they applied the various theories about mind, brain and CAs in 

a consistent manner. 

In the end, the three representations developed, the SCAM diagrams, table and the CAAR 

diagram, were not only effective alone but were well integrated in that changes to one were 

usually relatively easy to propagate to the others, even though done manually (section 3.2).  

Naturally, we take Diaper’s (2001) point that complex method development, and particularly 

method specification, must be done with analysts’ software tool support.  This topic is 

continued in section 5.3.1. 

Acknowledging that the initial, main analysis covered but 9 seconds of elapsed task time, it is 

possible that any CA-based TA will always be at a low level of analysis and would therefore 

be unsuitable for analysing task of more than a few minutes.  On the other hand, even if this 

were so, there are many tasks or subtasks which are super safety critical, and therefore worthy 

of detailed, if expensive, analysis, e.g. the time between V0, when an aircraft is committed to 

take-off, and rotation, when the aircraft has sufficient airspeed and height above ground that it 
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can safely start to climb; or during an aircraft’s handover from one sector to another by air 

traffic controllers; and numerous similar situations.  Furthermore, first a CA-based technique 

might be used only on especially important subtasks and other TA methods used for the bigger 

task and, second, a library of CAs might allow overall task description at some meta-level that 

would then require only occasional descent to more detailed levels when appropriate. 

Beyond the scope of this paper, a meta-cognitive architecture at the CA level needs developing 

and specifying.  While such an architecture might include relatively distant brain areas, the 

expected focus would be within a localised brain area where, for example, two spatially 

adjacent, ignited CAs might already, or start, to share neurons and such sharing increases so as 

to create a super-CA; on subsequent ignitions, ignition of either will ignite the other.  Such a 

model hypothesises a tighter binding between CAs than that of two interacting with each other, 

but which don’t share any, or not very many, neurons.  It might be possible to distinguish super-

CAs from separate, interacting ones behaviourally in that ignition of one component CA 

(nearly) always causes ignition of the other(s) in the super-CA, whereas with separate CAs, 

then in some circumstances one CA igniting does not cause its sometimes related one(s) to 

ignite.  There aren’t great problems on the TA side about this since the levels concept is 

ubiquitous in TA, but a great deal remains to be done on CA meta-architectures, in the brain 

and in CA-based AIs.  Much of the cognitive psychology literature, e.g. on selected and divided 

attention, may also need some redrafting to fit better at a CA level of analysis.  

 

.5.2 Psychology, Neuroscience and Artificial Intelligence 

The relationship between brain and mind remains one of the great scientific puzzles.  

Neuroscience involves describing the physiology and biochemistry of the brain whereas 

scientific cognitive psychology describes the mind as an information processing device (see 

Introduction).  At best for such models of brain and mind, they represent two different 

descriptions of the same thing, a physical one and a functional one, respectively.  Such different 

descriptions of a thing are often conflated, for example, describing the heart as a “muscular 

fluid pump” combines its physical physiology with its function as a pump; for further 

discussion see Scott- Phillips et al. (2011) in the context of their distinction between proximate 

and ultimate explanations: the former correspond to physical, brain, descriptions and the later 

to mental, functional ones. 

There are a number of problems with careless conflation of different descriptions.  An obvious 

one concerns establishing functionality.  For example, one might describe an electric hand drill 

as a device for making holes, but if it is considered as a spike rotator, then its functionality can 

be extended to sanding and polishing and, using a crank, such a drill can perform tasks 

involving linear reciprocating motion, e.g. sawing.  Furthermore, multiple functionality is 

common in biology, e.g. that bones provide structural support and the production of red blood 

cells.  The brain is particularly complicated because a great deal of the cortex is unspecialised, 

as far as currently known, and can be involved in many and apparently very different tasks.  

Such a property is central to the SCAM and its PotN conception. 

There are areas of the cortex that do have a specialised functionality, but just what this might 

be is difficult to establish with complete certainty.  Whatever physiological methods are used, 

the basic problem is the range of tasks tested.  As a hypothetical illustration, one might find a 
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brain area that is always active during language tasks, and careful experimentation might show 

this area is only active during parsing, but whether it is a specialised language parser, or part 

of one, would remain moot.  Apart from the problems of specifying functionality, it is always 

possible that the same area may be active in tasks that are untested, say when riding a bicycle 

or listening to music, and the range of untested tasks is effectively infinite. 

The logical problems remain at whatever physiological level of detailed studied, from single 

cell recording to what are quite large brain areas, i.e. relative to the size and number of neurons 

involved, and this is also the case with CA-based models.  Indeed, it might seem that the 

problems are hardest at the CA level, but they do have a subtle advantage in that ignited CAs 

exist only temporarily and so searching for fixed brain neuron or area functionality will often 

be bootless.  A further, more important advantage to using CAs to model both brain and mind 

is that there is a tight binding between the two such that the physical properties of a CA closely 

match their functional, information processing ones.  No such tight binding exists for the 

physiology of larger brain units and traditional cognitive psychology, and while there is a 

similar tight binding at the level of single cells, we hypothesised in the Introduction that a 

Grandmother neuron might be better understood as being a frequent member of a Grandmother 

CA, which also solves the problem of what happens if such a cell dies. 

CA-based ANNs also suffer the same logical problems in that once they have been running, 

and learning, for some time, then the function of a particular CA is difficult to infer, even 

though the state of the whole system is open to inspection.  In contrast, with symbolic AIs such 

as ACT-R, the function of each of its software modules is well understood as these are 

programmed using traditional software methods, i.e. the functionality is as well understood as 

for that of any piece of correctly running software code.  Although the authors are confident 

they could do so, with sufficient resources, they have not attempted to implement anything 

from their first TACAP analysis as a CA-based ANN.  Their plans on this are discussed further 

in section 5.3.4. 

The authors’ view is that a major benefit of this first TACAP analysis is that of a precursor to 

a General Theory of both brain and mind.  This is discussed further in section 5.3.3.  TACAP 

is intended to encourage cognitive scientists of all sorts to consider both the neural and 

cognitive at the CA level and, by exploiting the applied cognitive approach of TA, facilitate 

creative, sensible proposals about CAs and their architecture.  When TA is done well, then it 

places quite severe constraints on what is “sensible” and, as illustrated throughout Appendix I, 

a considerable amount of psychology is involved; and with TACAP, some neuroscience as 

well. 

 

.5.3 Future Developments  

This TACAP paper is the start of a story.  While research on both TA and CAs has been going 

on for decades, it is their combination that makes TACAP unique.  The following subsections 

outline work that needs doing to further develop TACAP (sections 5.3.1 and 5.3.2), how it 

might have substantial theoretical consequences (5.3.3), and the authors’ near term plans for 

TACAP development (5.3.4). 
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.5.3.1 Method and Software 

Continuing from section 5.1 and the essential requirement to develop analyst support tools, 

Figure 14 shows one high level, user perspective of the suite of tools that need developing for 

this paper’s TACAP technique.   

 

Figure 14  Software tools suite required to automate the TACAP technique. 

 

It is assumed that existing or new tools would support analysts working with various types of 

task performance data and that AL lines would be imported into the Main Analysis tools.  It is 

envisaged that the latter is the analyst user’s main interface that, apart from free text entries, 

would automate the decisions made and, of course, test and flag inconsistencies, a.k.a. current 

errors, in an ongoing analysis.  From the early stages of a TACAP analysis, as CAs are 

identified they would create SCAM Table entries and, as the parameters are filled in, then there 

may be feedback to the Main Analysis tools.  Once each CA’s SCAM table’s row of data are 

all filled in, then a SCAM diagram is created for that CA and made available in the Main 

Analysis tools.  The SCAM Table tools also seed the CAAR Analysis tools with both identified 

CAs and their location on the task timeline.  The analyst user must still specify relationships 

between CAs, but producing the CAAR diagram should be at least semi-automated.  

Furthermore, much more sophisticated relationships between CAs could be relatively easy to 

specify than was realistic with the first, manual analysis, e.g. cycles of feedback between CAs 

could be indicated, say by multiple arrow heads, and types of input/output could also be coded 

beyond the simple excitatory or inhibitory relationships used in this first analysis. 

Noting the priming and decay parts of the SCAM, P50% and D50%, were clumsy for producing 

the SCAM diagrams manually (section 4.2.3 and Figure 12), a simple power function would 

could easily be applied in a SCAM diagram production tool. 

Similarly, the sub-optimal entries to the SCAM table with respect to generating SCAM 

diagrams in a manual analysis (section 4.2, Tables 3 and 4 and Figure 10) involve trivial 

software calculation, allowing future tools to optimise the user analyst’s ease of input as the 

simple backend software would take care of the rest.  These are examples that emphasise the 

importance of software tools to support the development and specification of complex methods. 

While a design feature of the first TACAP analysis was to include various capabilities to cross-

check within and across the main representations, the suspicion is that the analysis is not 

entirely error free, notwithstanding many hours of testing.  As an example, only after the first 

draft of this paper was completed was it discovered that CA VHWA (Visual Hot water Area) 

was correctly present in the CAAR diagram but entirely absent from the SCAM table and 
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Appendix I; most of the testing had been done between the latter two.  The belief is that a 

reasonable analysts software suite would not only make analyses better, and nigh error free, 

but would reduce analysis time to a third or a quarter of what it might take to do manually.   

Experience with developing such tools, e.g. Diaper’s (e.g. 2001) LUTAKD toolkit, suggests 

that in addition to being essential for method specification, such tools are also likely to change 

the method itself, not least because what was implausible effort in a manual analysis becomes 

easy with appropriate software.  Nigh impossible to predict in advance, as an example, one 

candidate would be the animation of the CAAR diagram.   For the initial TACAP analysis, the 

CAAR diagram was done in PowerPoint (section 3.2) and for the expert user it is relatively 

easy to animate the timeline and the CA boxes and the arrows.  Like envisaging the SCAM 

diagrams without drawing most of them (section 3.2), the CAAR diagram was only animated 

in the analyst’s mind during analysis.  The animation (Appendix III) was only done after the 

main analyses were completed.  On the other hand, for less visually adept analysts, they might 

well find an automatically animated CAAR diagram of considerable help.  It should certainly 

help when presenting such work to conference or seminar audiences. 

 

.5.3.2 Artificial Intelligence 

The evidence is that CAs do exist in the brain (Harris, 2005; Huyck and Passmore, 2013; and 

Introduction), although a great deal of our understanding of CAs has arisen from AI work with 

ANNs.  No doubt there are interesting scientific research opportunities involving the mimicry 

of brains and minds (section 5.3.3), but future, practical applications of CA-based AIs depends 

on identifying roles and functions. One CABot, for example (Huyck et al., 2011), was 

implemented as a robot in a virtual, simple games-like environment with a general role of 

operating as a user’s assistant.  TA is rarely done frivolously because it is expensive in time, 

money, and human resources, of expert analysts and task performers.  Monitoring and assisting 

users in complex, safety critical tasks, particularly when tasks and their environments are 

variable and require rapid decision making, for example in aviation as mentioned in section 

5.1, would seem to provide appropriate and useful application areas for development of 

versions of the TACAP approach and their useful implementation as CA-based AI assistants. 

Building the CABot systems provides confidence that such CA-based AIs, with only minimal 

initial programming, are able to learn to carry out tasks.  They will develop their own CAs by 

unsupervised learning, by trial and error.  As discussed in section 5.2, it is difficult to infer such 

CAs’ functionality even though there is the potential to inspect every state in every program 

cycle.  Unless particular CAs are forced on a system, then it is unlikely that AI CAs  will 

coincide with brain and mind CAs, i.e. both AIs and people can learn to perform the notional 

“same” task but the fine details at the CA-level will differ.  The same is true between any two 

people and, anyway, even frequently repeated tasks by the same person will not use quite the 

same CAs each time.  We cope with these within and between differences in people and it will 

be necessary to extend the same coping strategies to genuinely intelligent, flexible, self-

learning AIs. 

We believe that CA based AIs will become increasingly popular. They are capable of learning 

new domains and while all AI systems are currently domain specific, CA-based systems will 

be more flexible than Expert/Knowledge Based Systems or symbolic ones.  A virtual agent 
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with a simulated neural brain will function in an environment, and learn significant aspects of 

that environment.  Upfront programming effort required in symbolic AI development, and 

maintenance, will be replaced by the self-programming capabilities of CA-based systems, 

although there may be a cost if it is necessary to provide learning nurseries for new CA-based 

AIs.  Perhaps within only a few decades, but after the emancipation of the early CA-based AIs, 

people will have another highly intelligent species with which to share planet Earth; and one 

that can talk to us in our own languages. 

 

.5.3.3 General Theories of Psychology and Neuroscience 

A General Theory is, within its scope, a theory of everything.  General Theories are quite 

common in psychology, even if below cognitive psychology’s axiom concerning the mind as 

an information device, and they are often quite simple.  What makes a CA-based General 

Theory attractive is the “tight binding” (section 5.2) between psychology and physiology.  A 

possible future development might be the deliberate conflation of description of brain and 

mind, producing descriptions where a CA has physical properties, presumably an improvement 

of the SCAM table, and functional ones, what the CA does and its relationships to other CAs. 

Traditionally, psychology has borrowed from other technologies, from Victorian hydraulics, 

e.g. people feel pressure, to computing, and even changing psychological models as 

technologies improve, e.g. Diaper’s (1989b) PDP8 versus PDP11 models of cognition (the 

PDP8 models do operations in registers whereas the PDP11 ones dispense with registers 

altogether).  With CAs, for once the direction might be opposite, in that there is a chance for 

such a psychology to focus physiological studies, i.e. having posited the existence of one or 

more CAs, then the physiologists might try and find them. 

Such possibilities may be some considerable time away as at the moment too little is known 

about CAs, in brains, minds and in AIs.  Indeed, the TACAP development was explicitly 

intended to encourage cognitive scientists to think and work at the CA-level and, over time, 

thus might an international community become established. 

 

.5.3.4 Practical Near Term Developments  

While the authors wish to enthuse others with a practical approach to CA-orientated thinking, 

they have some near term plans following this paper’s publication.  They will offer seminars 

and conference presentations focusing on special aspects of the TACAP research suitable for 

different audiences.  The full animation of the CAAR diagram (Appendix III) might be 

particularly useful for these (section 5.2).  At least one on-line presentation will also be 

developed. 

We are also in the process of developing a proto-neural cognitive architecture.  We can 

currently implement simple associative memories, and generic rule based systems in simulated 

spiking neurons.  Combining these will make a proto-neural cognitive architecture, which 

could be used for executing tasks to simulate, at a neural level, task execution.  An obvious 

extension would be to extend our existing binary CAs to more complex ones that behaved as 

those described in the analysis (Appendix I).  This would enable us to develop the TA 

mechanism in step with a neural cognitive architecture. 
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.6 Conclusions 

The authors believe that this is a ‘John the Baptist’ paper that starts a new chapter in the 

combination of psychology, neuroscience and AI.  In the end, it is probably not what they have 

done that is important, but how they did it.  The TACAP provides an easy entrance for others 

to learn to think at the CA level.  Appendix I, the main analysis, is crucial for such a purpose 

as it contains 65 examples of CAs which others can study and use as a basis for identifying 

CAs in more appropriate tasks. 

Although the trend in ergonomics is to study general systems above the level of tasks, as 

Sociotechnical Systems (e.g. Stanton and Harvey, 2017), and sometimes called Systems-of-

Systems (Harvey and Stanton, 2014), the essential need for the detailed study of some tasks 

will remain.  Recently the terms “Artificial Intelligence” and “AI” have entered popular 

awareness, although, like “psychology” for much longer, the general public may know little 

beyond the terms themselves.  Just how intelligent, if at all, some of the systems that these days 

claim to be AI is open to question, but the AI cat is now out of the bag and genuinely intelligent 

systems may result from AI’s commercialisation. 

TACAP is at least paddling hard to catch the crest of the coming AI wave.  As a new approach 

it lacks much of the baggage of older TA approaches, which might further commend it for 

development. 
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